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The development of time-dependent non-linear perturbations in a laminar boundary layer on a plate in 

the case of transonic external flow is investigated. The study of the two-dimensional velocity field 

reduces to solving an integrodifferential equation for a function which depends on time and one spatial 

coordinate. The theory which is developed achieves a continuous transition from subsonic to super- 

sonic flow since the above-mentioned governing equation contains the Burgers equation and the 

Benjamin-On0 equation, by means of which the evolution of perturbations outside the transonic range 

are described, as limiting cases. 

THE GENERALIZATION of a triple-deck theory of the free interaction of a boundary layer [l-3] to 
the case of transonic velocities can lead to differing estimates of the scales of the perturbations 
depending on the role of unsteady effects. The problem with interaction in the transonic range, 
considered for the first time in [4], admits of the introduction of time in the external potential 
flow domain [S] without changing the estimates corresponding to stationary conditions. These 
estimates, as was shown in [6], are established, for example, from the similarity laws which 
occur in the theory [l-3]. Another mechanism for the wave propagation has been proposed in 
[7], where the scales of the variables introduced necessitate the retention of the time-dependent 
terms in the external domain as well as in the boundary domain. 

Below, we describe an asymptotic analysis of non-linear perturbations, the amplitude of 
which exceeds the value assumed in [7]. The concept of self-induced pressure in the case of 
such amplitudes prescribes the normalization of the dependent and independent variables 
which is different from that in [4, $71, with the flow acquiring a four-deck structure. Estimates 
of the quantities are introduced as combinations of the transonic parameter and powers of 
Reynolds number. A special limiting transition to Mach numbers of the order of unity reduces 
the asymptotic procedure under consideration to the previously proposed four-deck theory [S]. 

1. Let us study the longitudinal transonic gas flow around a flat plate under the assumption 
that a perturbation of the form 

$=Ro+Sp,.+S2p2. +...,, PO - p:, - = S2plm + s3p2, + . . . 
px2 

(1.1) 
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is introduced at a distance L* from the leading edge into the bulk of the boundary layer. 
Here, the x * axis of the Cartesian system of coordinates x*, y* is directed along the velocity 

vector of the free stream with Mach number M,, t* is the time, u* and u* are the components 
of the velocity vector, p* is the density, p * is the pressure and p* is the dynamic coefficient of 
viscosity. Dimensional quantities are indicated by asterisks, the subscript w refers to the 
unperturbed state at infinity and the leading edge corresponds to n* = 0. The arguments of the 
functions with the subscripts 1 m, 2m, . . . are T = tj5” Re”* U * L *-l t*, 

Re = p: lJ_* L * I>_ -_j 00, 
X = ij3’* Re”’ L *-I (x * - 

L*), Y, = Re”* L *-* y * . Reynolds numbers are considered, and the 
amplitudes of the perturbations in (1.1) are specified in terms of a small parameter 6= 
(I@ -l)Q;*, where Q_ = O(1). The length of the perturbed domain in which X = O(1) is 
assumed to be small (compared to the scale L *) which, on introducing the constraint 
Re-“3&91, enables one to regard the profiles of the longitudinal component of the velocity 
U, and the density I$ of the initial steady-state solution in the boundary layer as depending 
solely on the vertical coordinate Y,. 

The above-mentioned constraint is a consequence of the stronger inequality 

Re+ c< 6 << 1 (1.2) 

which is assumed to be satisfied everywhere below. The meaning of (1.2) will be obvious from 
the subsequent discussion. 

On substituting (1.1) into the Navier-Stokes equations, after integration we obtain 

ulm = A,(T,X)%, %tl = -~~oK,,~. PI,,, = A, 2, A,,, = p,,“(T,x) 
m m 

~2m = 
aA dUo ~,+-A,$~- &Jo(r,) 

m ax 

(1.3) 

The functions A,(T, X), A,(T, X), p,,(T, X) in (1.3) are arbitrary. The limiting behaviour of 
the unperturbed solution close to the wall, which we assume to be thermally insulated 

Uo=hlY,+ . . . . Ro=ro+ . . . . (Y,-+ 0) (1.4) 

shows that, when Y, =O@), the first two terms in the representation of both U* and U* from 
(1.1) become of the same order. Hence, in the lower part of the boundary layer, where the new 
vertical coordinate Y. = &‘Y,,, =6-l Re”* L *-l y* is of the order of unity, the perturbations 
become non-linear and the series (1.1) are transformed in the following manner 

g&lo + . . . . -$&+a + . . . . 
00 U, 

&=fo + . . . . 
Pm 

$+2p,, t . . . (1.5) 
OD aJ 

Functions with the subscript la depend on the arguments T, X and Y.. As a result of 
representing their solution in the form of (1.5) the Navier-Stokes equations lead to 

(1.6) 
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The non-viscous equations (1.6) imply the conservation of vorticity w,, = ah,/dY, along the 
trajectories of the gas particles. Assuming that the boundary layer is unperturbed at the initial 
instant of time, we find from this that 

The limits of the expansions (1.1) as Y, + = rewritten in terms of the variable Y., which, 
when account is taken of the explicit expressions (1.3) and properties (1.4), have the form 

u’ 
y=&(Ya+~)+ . . . . 
u, 

+)+ . . . . = t3*p,, + . . . 
en 

_A %y &!l h*&i 1 ah 
‘ax “-aT- ’ IaX-h,r,x 

(1.7) 

must be identical to the limits of expansions (1.5) as Y, + 00 in accordance with the matching 
principle. The condition which has been formulated, while uniquely defining the functions 
B,,(T, x), &(T, -0 shows that P,. =A,,,, and the principal terms with respect to 6 of series 
(1.7) for U* and U* yield the solution of Eqs (1.6). 

Local roughness on the plate, the shape of which is specified by the equation 

y* = 6Re-x L*G,(T,X) (1.8) 

can serve as a source of perturbations of the form being considered. 
The impermeability condition 

u ac, aGo ; u 
10 = aT ‘0 ax 

on the surface Y, = G,(T, X) of the 
non-linear non-viscous subdomain 
relationship 

deformed segment of the plate which is embedded in a 
Y. = O(1) with the velocity field from (1.7) imposes the 

a4 + G,) 
aT 

+b,(A,+G,)a(A~~GY)=-j;l;~ 
10 

(1.9) 

on the unknown functions Al(T, X), p,,(T, X). 
In the case of the characteristic lengths and times introduced above, the thickness of the 

viscous sublayer is much smaller than the height of the roughness (1.8) if inequality (1.2) holds. 
In this sublayer, which is adjacent to the solid surface, it is appropriate to use the coordinate 
N1 = lig’4 Re”4(Y, -G,J = O(1). The flow parameters are then written in the following form 

U* -=tiu,,+ . . . . u: 
(1.10) 

u* 
-=a% aGa 
u: aT+U 

Functions of the arguments T, X and Ni are marked with the subscript 11 and the dimension - 
less viscosity p0 was calculated using the temperature T*/T_* = l/r, of the unperturbed 
boundary layer when Y, = 0. 

The Navier-Stokes equations, when their solution is represented in the form of (l.lO), yield 
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au,,+ h, =o 

ax x 
aPI/ 

’ aN,=O 
To the no-slip conditions at the solid surface 

Ul,=u*~=o, (iv,=O) 

it is necessary to add the matching condition at the lower boundary 
which implies that pl, =plm and 

(1.11) 

(1.12) 

of the non-viscous domain 

(1.13) 

Let us now turn our attention to the fact that the coordinates N, and Y, become of the same 
order when S = Rem*“. In the latter case, the non-linear domain merges with the viscous sub- 
layer adjacent to the wall and the scales of the perturbations are identical to those considered 
in (71. 

2. Let us put Y, + =. The limiting properties U&Y,)-+ 1, &(Y,)--+ 1 then specify the 
behaviour of expressions (1.3) and also the asymptotic form of the solution (1.1) at the outer 
edge of the boundary layer 

1 l 

-++ l-S2p,, +...* +-S KaAl+ 
ax **. 

l 

p-d+s*p,, +.... PI-P* A + S2plm + . . . 
Pm pzJx2 

(2.1) 

If the thickness of the three flow subdomains which have been introduced above is smaller 
in order of magnitude than their length in the longitudinal direction the situation is the op- 
posite in the external subdomain above the boundary layer: in the case of transonic flow, the 
scale of the vertical coordinate y* = S2 Re-1’2 L * Y,, where the new variable Y, = O(l), exceeds 
the remaining previous scale S-3’2 Re-1’2 with respect to the coordinate x* . When Y, + 0, the 
perturbations (2.1) induce in the external domain Y, --+ O(1) a gas parameter field 

g= l+62u,, +s3112” + . . . . Lsq4, fSh2” +... 

u: 

= @p,, +s3pzu + . . . . M:=l+SQ, 

(2.2) 

Functions with the subscript lu, 2u, . . . depend on the arguments T, X and Y,. On intro- 
ducing formulae (2.2) into the system of Navier-Stokes equations, we obtain 

a(p1ll a(pIu 
Plu =Plu = -% 4” = ax l w4 = y 

l4 

In the next approximation, we have 

aulu : auzu : ap2” _ o aolU i auzu I apzU : aulu= o 
aT ax ax ar, ' az- ax ax 

(2.3) 

(2.4) 
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au,,, h2, aP2, _ o -+-+-- av,u a~,, ah 
aT ax arm 

+-=__Q &!k+h 
’ aT ax aT - ax ax 

Relationships (2.3) are supplemented by the equation for the potential 

which is the condition for the system of equations to be solvable in the second approximation 
(2.4). The boundary conditions 

%MXO) = _p (T x) hh(TJ.0) 
ax -‘* 

=_aAIKX) 
au, 2X 

follow from the matching with (2.1). 
The affine transformation 

T = b,r, X = bxx, Y, = b,y,,, N, = b,n,, Y, = b;y, 

u,” = buu, ‘ula = b,,u, ull = byu,. ‘ull = b,u,, plm = bpp 

A, = b,A’, 6 = b,G Qlu = b,Q, a. = b,K. 

eliminates the constants A,,, r, and p,, from the subsequent treatment if one puts 

(2.6) 

(2.7) 

in (2.7). 
Let us use the notation A = A’+G. Provided that there is no singularity in the solution of the 

problem 

au, au, au, _ ap a2u, a4 ah 
~+“l~+~lan,--~+anf’ z+a”r=O (2.9) 

n, =O:u, =u, = 0, n, + m: ul + A(t,x) (2.10) 

the viscous sublayer adjacent to the wall has no effect, in the approximation being considered, 
on the flow parameters in the upper subdomains. The closed system of non-viscous equations 

a*Q a*Q a*Q 
-+K,~-p=O 
atax Y 

(2.11) 

“A+Aem=__- aA ap 

at ax ax 
(2.12) 

a~0,x.o) 
a.r 

= -p(t.x), 
aQ(fJ,o) 

ar, 

aA + w,X) C-P 
ax ax 

(2.13) 

enables one, independently of (2.9) and (2.10), to find the functions A@, x), p(r, x) and, 
thereby, to find the velocity field in the non-linear non-viscous subdomain 

u, = n, + A, 
3A ac aG 

U, =-n,ax+at+u~a.r, tlu =y,, -G (2.14) 
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as well as in the bulk of the boundary layer using the explicit expressions (1.3). 
On making the substitution 

x, =x-(l+K,)r, t, =x+(1-K,)r 

in (2.11), we obtain a wave equation for which the following representation holds [9] 

Here S’ is the domain of integration TJ. cr.- IX. -5. I. On returning to the variables t and x 
and eliminating p(t, X) using (2.13) and (2.12), we have 

where the integration sector S is established by the inequalities 

q < t, 4 < x - K_(r - 11) 

When K, ++oo, Eq. (2.15) becomes the Burgers equation 

dA+,&- 1 a*A d*G 
at ax-F ax’-TiF [ 1 

(2.16) 

(2.17) 

Actually, the domain of integration (2.16) in this limit is enclosed between rays which make a small 
angle. Consequently, the integrand A(q, 5) (as well as G(q, 5)) can be replaced by A(t, E,), and, after 
integrating with respect to the variable q, we then obtain (2.17) instead of (2.15). 

The other limiting case when K_ + --M corresponds to integration within an obtuse angle 
close to n. The narrow domain of small t -IJ makes the main contribution since, in the 
remaining part of the sector (2.16), double differentiation with respect to the variable x in Eq. 
(2.15) leads to a quantity of the order of I K_ l-5’2. As above, let us replace the function A (q, 5) 
for small c-q by A(?, Q, and then, after some simple reduction, we arrive at the Benjamin- 
On0 equation [lo, 111 

(2.18) 

Here, the integral is understood in the sense of a principal Cauchy value. 
The integrodifferential equation (2.15) is a consequence of the interaction of a non-viscous 

boundary subdomain with an external potential flow through the bulk of the boundary layer, 
which plays a passive role. The non-trivial question concerning the existence of a regular 
solution of the Prandtl equations (2.9) with a pressure gradient specified using the function 
A(& x), found from (2.15) serves as an intrinsic criterion of the realizability of the four-deck 
structure of the perturbations which has been introduced above. 

3. Let the surface of the plate be unperturbed (G =O). A non-linear motion which is induced 
by some method is then governed by Eq. (2.15) with a uniform right-hand side l-I(A) The 
equivalent way of writing out the operator ll(A) in the form 
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is convenient when the solution is sought in the form of a travelling wave A = A(c), c = x - ct. 
When K, CC, we have from (2.15) 

a!A 1 d2A 
(A-C)z=JK,_e 

When K, CC, we again arrive at the Benjamin-One equation. 
A single soliton solution of Eq. (2.15) 

A= 
4C 

1+&c-K-)(X-cCt)2 (3.1) 

exists when K, CC c 0. As can be seen from (3.1), the phase velocity of the soliton uniquely 
defines its amplitude 4c. The “mass” of the soliton 

;A&= 47C 
-00 (c-d (3.2) 

is a function of the parameters occurring in (3.1). We note that, in the subsonic range, a 
quantity, analogous to (3.2) is independent of the phase velocity in the case of a single soliton 
perturbation. The integral characteristic (3.2) is important in the mechanism of the generation 
of solitons [12]. 

The periodic solution of Eq. (2.15) 

(3.3) 

also assumes that K, cc < 0. 
Following [13], let us represent function (3.3) in the form of a chain of equidistant solitons 

A= $ 
4s 

,,=-- 1 + s’(c - K-)(x - ct - 2nxk-‘)’ 

where 

8 
s=c-, fj= k cc0 

arethe c(c-KJw * 

(3.4) 

(3.5) 

Each term in (3.4) tends to the solution of a type of solitary wave (3.1) in the limit when 
s +c which is attained, according to (3.5) when 0 + 0. Since Is Iclc I always, in the general 
case the individual elements of the chain (3.4) are not solutions of Eq. (2.15) but only satisfy 
this equation in the sum as a result of the non-linear interaction. 

Let a be a parameter. Equation (2.15) is invariant under the transformation 

x+x-aat+ A+A+a, K,+K,-a 

and hence, along with (3.3), the function 

is also its solution. The four parameters appearing in (3.7) are governed by the constraints 

(3.6) 

(3.7) 
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0<0<1, c>K_, k > 0. We note that, unlike (3.3), the phase velocity c in (3.7) can have any 
sign. In the case when 

UC E H, A- ! 1 k 
l+A - Icl(c-K# c<o 

we return to (3.3). The identity 

F = 1+ 2 g a” cos[.ti(x - ct)l 
n=l 

implies that the amplitudes of the harmonics in the Fourier expansion 
not series in the parameter o but are single terms in powers of n. 

of the function (3.7) are 

4. We will now consider the question of the existence of a regular solution in a boundary 
sublayer n, = O(1) when the periodic function (3.7) is chosen as the external boundary 
condition when II, + =. Equation (2.15) is invariant under the transformation 

f + p%. x-+px. A -+ p-%A, K, -_) p-%K_ (4.1) 

which depends on the parameter p. The family of solutions (3.7) is mapped on to itself by the 
transformation (4.1) since its action on a function from the given family is equivalent to the 
substitution k + pk, c + p”‘c, K, + P-2’3K_. 

We will first consider a stationary 2n-periodic function 

A= (02” - 20” COSM) 1 
from the family (3.7). We will seek a stationary 2rc-periodic solution of the system of Prandtl 
equations (2.9) with a pressure gradient dp/dx= -XdA’Idx specified in terms of A from (4.2) 
and the boundary conditions u, + A (n, + -); u, = c,,, u, = 0 (n, = 0). Here, we introduce the 
velocity c,, of the wall along a tangent to itself as the additional parameter of the problem. It 
will follow from the subsequent account that the solution sought does not exist for all c,. 

Let us put 

1 
Co = (-K-)x (4.3) 

The system of Prandtl equations for the boundary layer undergoes the transformation 

t -+ Y,Y;‘r* x + YlX, YI + (vlvi’)‘/2Y, (4.4) 

UI + Y249 VI -+(Y;‘Y2) )5 VI. P-,YiP 

which depends on the two parameters y, and yz. Let us take y1 = -1 and yz = c, c 0. Then, the 
application of (4.4) leaves system (2.9) unchanged, and the boundary conditions take the form 

u, = 1, u,=o (n,=O): U/-+U, (n,-+m) (4.5) 

where U, = AC;‘. From (4.2) and (4.3) we have 
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The conditions [14] 

‘i Qidr = 0, i” (u: - u,)cLx = 0(a4) (4.7) 
0 0 

for a stationary 2x-periodic solution of the system of Prandtl equations to exist were invoked in 
the case of the boundary-value problem (4.5) with a function u_ which can be represented in 
the form 

id = I+ i o*Q,<x>, Q,(O) = Q,,(W 

The second condition from (4.7) holds if the Fourier series for the quantity 
the first harmonic. The expansion (4.6) complies with this requirement. 

Let us assume S, = 1. It then follows from (4.7) that S, = 0 and S, = 10. 
confine ourselves to the first terms of series (4.3) since the procedure 

Q,(X) only contains 

For brevity we will 
for calculating the 

subsequent terms in the expansion with respect to CJ is analogous to that given in [14]. 
The derivation of Eq. (2.15) and the formulation of problem (2.9), (2.10) corresponds to a 

fixed wall. Using (3.6), we change to a coordinate system where the wail is fixed. Returning 
from u_ to A, we conclude that, in the case of an external boundary condition of the form 

A=-co+ 
1 

(-co - K,)K r 
-1+ 2 2 [Cr2” - 20” cos[n(n + c,r)]] 

n-1 i 
(4.8) 

a 2x-periodic solution exists in each sublayer if the relationship 

l co = - y (1+;* 0%) 
(-co-K,) * (4.9) 

which implicitly determines the phase velocity in (4.8), is satisfied. 
We will now extend the result to any period using (4.1) where it is necessary to put p = k. 

Then, instead of (4.8) we return to the function (3.7), in which the phase velocity c = k2’3 I c,, I, 
as the external boundary condition. As far as the viscous sublayer is concerned, in the steady- 
state solution of the Prandtl equations for A specified using (4.2) it is necessary to make the 
substitution u, + u,+ Ic, I, X, -+x,- Ic,, It with c, from (4.9) having made use of their invariance 
with respect to (3.6) and then to carry out the transformation (4.4) with y1 = k, yz = k-2’3. As a 
result of this substitution, the new solution of system (2.9) now satisfies conditions (2.10) with 
the function A from (3.7). We note that, in (4.9), the change in K, on changing to a moving 
system of coordinates according to (3.6) has been taken into account. 

Hence, a solution of the Prandtl equations in the viscous boundary sublayer with no-slip 
conditions at the fixed wall and a pressure gradient II(A), specified using the function A from 
(3.7), exists if the following relationship between the four parameters in (3.7) holds 

k=c(c-K.#(l.-lOc?+...) (4.10) 

For o = 0, expression (4.10) is a dispersion relationship in the linear theory of the stability of 
a boundary layer in the case of transonic external flow velocities which agrees, apart from the 
scale factors (2.8), with that obtained in [15]. 

5. The parameter K_ may be eliminated from the Burgers equation (2.17) and the 
Benjamin-On0 equation (2.18) which hold in the case when I K, I+ -, using an affine trans- 
formation, the choice of which is not unique. However, the transformation, which eliminates 
the parameter K, from (2.17) and (2.18) with the additional requirement of the invariance of 
problem (2.9) (2.10) as well as relationships (2.14) with respect to it, is uniquely defined 
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u, +IK,I -X u,, u, -AK,8 u,, p -+IKJX p (5.1) 

A -+IK_I-x A, G +IKJM G 

The coefficients of the extension of the functions with the subscripts a and I are identical. Let 
I K, I= O(&‘). It follows from Mi = 1 +SQ_ and (2.7), (2.8) that 

I&I= s-‘2-~h;%&,l3M4~ - II 

Superposition of the two transformations (5.1) and (2.7), taking account of (5.2), yields 

(5.2) 

(5.3) 

Dimensionless variables in the special system of units defined by (5.3) are indicated by the 
zero superscript and, as previously, dimensional quantities are indicated with an asterisk. 

It is necessary to put A = 89’8 in (5.3). In terms of the small parameter A, we then obtain 
complete agreement with the normalization of the quantities in the four-layer theory [8]. In the 
case when A = Re-“*, we return to the classical version [l-3] of the theory of free interaction. 

The order-of-magnitude relationship I Mz - 1 I= O(6) in (5.3) makes the choice of the scales in 
(l.l), (1.5), (l.lO), and (2.2) obvious. The continuous transition over the critical Mach number 
in the asymptotic equations obtained as a consequence of the estimates specified by (5.3), 
together with (5.2), subject to the condition K, = O(l), is associated with the non-linear nature 
of the flow. 
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